Genetic variation and possible mechanisms driving the evolution of worldwide fig mosaic virus isolates.
نویسندگان
چکیده
Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
منابع مشابه
Characterization of the Full Length Coat Protein Gene of Iranian Grapevine fanleaf virus isolates, genetic variation and phylogenetic analysis
The full-length coat protein gene of Grapevine fanleaf virus (GFLV) isolates from Iran was characterized byreverse transcription polymerase chain reaction (RTPCR) and sequencing. The expected 1515 bp coatprotein (CP) gene amplicon was obtained for 16 isolates out of 89 that were identified by double antibodysandwich enzyme-linked immunesorbent assay (DASELISA) in a population ...
متن کاملStudy on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus
Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...
متن کاملOccurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus
Sugarcane mosaic virus (SCMV) is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP) gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide ide...
متن کاملAn Investigation on characterization of cucumber mosaic virus isolated from lily green house in Damavand County, Iran
Background and Aims: Virus infections represent some of the most important diseases of lily, plants because of the devastating effects caused to the crops and the absence of effective treatments. A survey for virus diseases of lilies, revealed the occurrence of Cucumber mosaic virus (CMV) in plants growing in Tehran province, Iran. Materials and Methods: During 2013, 50 lily samples with virus-...
متن کاملMolecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment.
The structure and genetic diversity of a California Cucumber mosaic virus (CMV) population was assessed by single-strand conformation polymorphism and nucleotide sequence analyses of genomic regions 2b, CP, MP, and the 3' nontranslated region of RNA3. The California CMV population exhibited low genetic diversity and was composed of one to three predominant haplotypes and a large number of minor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Phytopathology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2014